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Abstract—The RF environment is a harsh and highly dynamic 

environment that includes both congested and contested spectrum.  

Typical testing lifecycles, include initial simulations, then 

laboratory testing in simulated noise environments with a few 

channel impairments, followed by outdoor testing in 

unpredictable RF environments under challenging unknown 

channel characteristics and unintended interference sources.  The 

large leap from predictable laboratory testing to unpredictable 

Over-the-Air (OTA) testing makes it difficult to evaluate and 

quantify the actual performance.  The use of emulated RF 

environments or RF scenes provides greater insight into system 

performance in challenging, and dynamic environments, while 

also enabling agile iterative performance improvements to fine 

tune the system. This paper describes the creation of realistic RF 

scenes to emulate RF environments that include a variety of 

narrowband and wideband signals, and random traffic patterns.  

We will also describe a RF learning approach that learns the 

spectral and temporal characteristics directly from actual RF 

environments, enabling the creation of RF scenes that mimic the 

actual RF environment enabling cost-effective repeatable test 

scenarios with the same complexity and rich expressiveness of 

actual operational RF environments.  RF learning also enables the 

cost-effective generation of the massive RF data sets required to 

train, validate and test new innovative RF Machine Learning 

(ML) algorithms.  
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I. INTRODUCTION 

The RF environment is a harsh and highly dynamic 
environment that includes both congested and contested 
spectrum.  Military communication and electronic warfare 
systems must do more than simply operate successfully in this 
harsh environment, they need to dominate it.  Typical testing 
lifecycles, include initial simulations, then laboratory testing in 
simulated noise environments with a few channel impairments, 
followed by outdoor testing in unpredictable RF environments 
under challenging unknown channel characteristics and 
unintended interference sources.  The large leap from 
predictable laboratory testing to unpredictable Over-the-Air 
(OTA) testing makes it difficult to evaluate and quantify the 
actual performance due to the unknown and rapidly changing 
environment and the lack of ground truth.  The rapidly changing 
environment also makes it impossible to repeat tests under the 
same set of challenging conditions while refining the system to 
optimize performance improvements. In addition, the 
complexity of congested and contested environments has led to 
new innovative RF Machine Learning (ML) approaches to deal 
with the unpredictability of the dynamic RF environment.  These 
new ML techniques typically require massive data sets to train, 

validate and test the algorithms to characterize and verify 
performance prior to operational deployment.   

The use of emulated RF environments or RF scenes provides 
greater insight into system performance in challenging, and 
dynamic environments, while also enabling agile iterative 
performance improvements to fine tune the system through 
repetitive test execution against test scenarios that are both rich 
and complex but also easy to generate, enabling rapid Monte 
Carlo testing scenarios and statistical assessment of the system 
performance across a variety of RF scenes.  The incorporation 
of RF learning capability, enables emulation of actual RF 
environments providing the ability to cost effectively execute a 
broad variety of testing scenarios as well as provide the massive 
RF data sets required of new ML applications to train, validate 
and test.  In addition, with rugged field ready RF emulator test 
systems, the same system can be used in the laboratory and the 
field, enabling the recreation of realistic, random RF 
environments with known statistical characteristics even 
outdoors.   

This paper describes the creation of realistic RF scenes to 
emulate RF environments that include a variety of narrowband 
and wideband signals, and random traffic patterns.  We will also 
describe a RF learning approach that learns the spectral and 
temporal characteristics directly from actual RF environments, 
which then can be used to recreate these environments enabling 
cost-effective repeatable test scenarios, and RF data sets with the 
same complexity and rich expressiveness of actual operational 
RF environments.  The ability to create realistic and statistically 
characterizable RF scenes enables the verification of wireless 
data links, electronic warfare techniques, signal detectors and 
demodulators, complex spectral sensing algorithms and 
supports the data appetite of new ML applications throughout 
the development cycle from design prototypes to outdoor Over-
the-Air (OTA) testing.  

This paper is organized as follows.  Section II provides an 
overview of our Mockingbird RF signal and traffic emulator, 
which is a rugged software defined test system capable of RF 
scene generation and RF learning to support testing both in the 
lab and in the field. Section III provides our approach to RF 
scene generation including the ability to support a variety of 
waveforms and traffic patterns.  Section IV presents our RF 
learning approach.  Section V describes a new approach to RF 
testing that leverage emulated RF scenes and environments, and 
section VI extends this testing approach to congested and 
contested environments.  Section VII describes an approach to 
generating massive RF data sets to enable training, validating 
and testing of new RF ML applications.  The remaining sections 
include our concluding remarks and references. 



II. MOCKINGBIRD RF SIGNAL AND TRAFFIC EMULATOR 

Mockingbird emulates multiple RF signals (“radio 
personalities”) and traffic patterns, enabling complicated RF 
scene generation replacing the need for multiple RF systems.  
Mockingbird includes a reconfigurable 2x2 MIMO Software 
Defined Radio (SDR), an embedded hardware accelerator and a 
simple and intuitive web application.  The rugged small form 
factor (6x6.5x2 in, 4 lbs) enables rapid outdoor field testing in 
controlled but realistic RF environments with the simplicity and 
efficiency of a software simulation allowing RF test engineers 
to quickly identify RF signal challenges early in the 
development cycle.  The built-in SDR supports a frequency 
range of 50 to 6000 MHz, with an instantaneous bandwidth of 
40 MHz.  Waveform generation includes a suite of built-in 
signal generators, as well as the ability to import custom 
baseband I/Q files from MATLAB or GNURadio, or from signal 
captures (using Mockingbird, or external systems).  The flexible 
modular architecture allows rapid configuration and system 
extensions.   
 

Fig. 1. Mockingbird RF Signal and Traffic Emulator 

The research and development of RF scene generation and 
RF learning capabilities described in this paper have been 
implemented as software modules on Mockingbird, creating a 
software defined RF test system that we use for test and 
verification of custom wireless data links, signal detectors and 
demodulators, and complex spectral sensing algorithms 
throughout our development cycle from design prototypes to 
outdoor Over-the-Air (OTA) testing.  We have also used 
Mockingbird to create complex RF Scenes for our research 
partners enabling field testing of dynamic spectrum sharing for 
cognitive radar and to emulate various jammer behaviors for 
training scenarios in contested wireless environments.    

III. RF SCENE GENERATION 

We define an RF scene as a mixture of various waveforms and 
traffic patterns.  The typical flow is as follows: 

• Create a Waveform 

• Add Traffic Patterns 

• Create the RF scene by adding various combinations of 
Waveform / Traffic Pattern Pairs 

A. Waveform Generation 

Waveforms can be generated via a suite of built-in signal 
generators, from baseband I/Q files imported from external tools 
like MATLAB or GNURadio or captured with the Mockingbird 
signal capture capability.  In addition, the RF learning module 
provides the ability to emulate an RF signature from the learned 

emitter or environmental characteristics.  All waveforms, 
regardless of source, are stored in waveform library.  
Waveforms transmission parameters such as transmit power and 
frequency are configurable.  Currently, Mockingbird includes 
the following waveform toolkits: 

• CW Test Signals: Tone, Two-Tone, Stepped Freq, 
Sweep 

• Analog Modulation: AM, FM 

• Digital Modulation:  
o FSK (MFSK, GFSK, MSK, GMSK) 
o PSK (MPSK, OQPSK, PI/4 QPSK, DPSK) 
o QAM (QAM16, QAM64) 

• Frequency Hopper 

• OFDM 
The CW test signals provide a suite of standard RF test 

signals to aid characterization of the frequency response of RF 
systems.  The Analog Modulation toolkit provides the ability to 
import specific audio files as the modulating message content.  
The Digital Modulation toolkit provides the ability to import 
specific bit patterns enabling protocol emulation.  The OFDM 
toolkit provides OFDM waveforms that emulate LTE and WiFi 
signal characteristics.   

B. Traffic Pattern Generation 

Each Waveform can have multiple traffic patterns (e.g. voice 
traffic, data traffic).  Traffic patterns are specified by defining 
the statistics of the transmission ON and OFF times.  Various 
statistical distributions are available including uniform, 
triangular, or constant.  The uniform distribution provides the 
most uncertainty in the realized ON and OFF times by 
randomly selecting a value that is equally probable between the 
user specified minimum and maximum times.  For the 
triangular distribution, the user specifies a minimum and 
maximum time, as well as a peak time providing random traffic 
patterns that have more concentrated performance around the 
peak parameter.  Constant traffic patterns enable a fixed ON or 
OFF time.  In addition, learned distributions as a result of the 
RF learning process can be used, enabling traffic distributions 
that emulate actual traffic patterns.   
 
Waveforms can be transmitted with or without a traffic pattern 
to enable test signal verification prior to prior to full RF scene 
test scenario creation and execution.  This also provides a 
simple incremental testing strategy, where the wireless system 
under test can be tested with a continuous test signal, then add 
the random traffic patterns to verify operation with intermittent 
burst signals, prior to full complex RF test scenario generation. 

C. Baseband I/Q Waveforms 

The baseband I/Q process creates a waveform from a baseband 
I/Q snapshot providing a signal playback capability.  The 
import process provides various amplitude scaling options, 
input data types (real, complex, int, float), and includes an 
internal resampling process allowing users to create or capture 
signals with the optimal sample rate of the external process or 
system.  Waveforms created from a baseband I/Q snapshot are 
treated the same as any other waveform.  The transmission 
frequency and power can be specified by the user, and various 

 



traffic patterns can be added.  The primary difference is that the 
baseband I/Q waveforms have a finite duration, therefore 
waveform emulation is signal playback, not signal generation.  
Signal transmissions durations that are greater than the input 
signal duration will result in repeated samples, whereas the 
built-in generators create waveforms with random input bit 
streams that do not repeat for a long time enabling better 
characterization of the expected system performance over a 
variety of input test signals.  Each transmission burst for the 
baseband I/Q waveforms can start at the beginning of the signal 
or continue from the last sample. 

D. RF Scene Creation 

An RF scene is a mixture of various waveform / traffic pattern 
pairs.  The RF scene can span multiple disjoint frequency 
bands.  The internal transmission scheduler coordinates the 
waveform transmissions including radio configuration 
(frequency and power control).  Each waveform transmission 
burst is added to the transmission queue and transmitted 
according to its traffic pattern.  Conflicts are managed 
internally, by implementing additional wait time to transmit.  
The wait times associated with a given RF scene can be 
estimated based on the statistics of the traffic patterns in the RF 
scene.  The actual transmit times and durations are saved to a 
log file enabling detailed analysis of the testing results and 
algorithm performance.  For heavy traffic loads, the waveform 
/ traffic patterns can be distributed across multiple systems 
where subsets of the total RF scene are implemented on 
individual systems. 
 
The RF scenes can be used as part of laboratory testing to create 
various time-varying spectral characteristics and interference 
patterns, that enable dynamic testing of RF systems including 
signal detectors, modulation recognition, spectral sensing and 
dynamic spectrum access or sharing algorithms.  The figure 
below shows an RF scene that is comprised of multiple signals 
spanning disjoint frequency bands including narrowband, 
wideband and frequency hopping signals. 

 
Fig. 2. RF Scene with multiple signals including a frequency hopper 

IV. RF ENVIRONMENTAL LEARNING 

RF learning provides the ability to learn the spectral and 
temporal characteristics of actual RF transmitters or the 
observed RF environment.  RF learning isolates signals in the 
observed frequency spectrum, learns the Power Spectral 

Density (PSD) of each signal, and probability distributions of 
the ON and OFF times.  We call the combination of these three 
learned results (PSD, ON and OFF time distributions) a RF 
signature.   
 
Each learning session is defined over a specific frequency band 
and learning time duration.  The longer the learning session the 
more accurate the learned statistics, but we have had very good 
success for RF learning sessions from on the order of 15 min to 
1 hour.  The result of the RF learning session is a signal list that 
includes a RF signature for each signal.   
 
The learned RF signatures can be used to emulate the RF 
environment or specific RF transmitter.  RF signature 
waveforms transmit a signal that has a PSD and transmission 
traffic pattern that is statistically similar to the observed RF 
environment or RF transmitter.  The RF signature waveforms 
can be combined with the other waveform types described in 
the previous section to create sophisticated RF scenes that 
captures both naturally occurring RF signals learned from the 
actual environment along with specific signals of interest (e.g. 
desired signal, interfering signals, jamming signals) within a 
dynamic spectral environment. 

V. RF SYSTEM TESTING 

A. Current Workflow 

The pace of new RF system development and innovative 
wireless communications technologies is increasing at a rate 
that challenges the ability to keep up from a RF testing 
perspective.  RF testing must continue to test under specific test 
scenarios that include standard performance measures, and 
regulatory procedures, but also verify that the systems will 
perform in highly dynamic unpredictable operational 
environments.  It is cost prohibitive to conduct repeated OTA 
testing in each actual operational environment.  The RF test 
engineer needs the ability to characterize and refine system 
performance across complex and realistic RF environments 
with both speed and confidence to enable agile iterative 
performance improvements to fine tune the system prior to final 
system verification and deployment. 
 
The typical RF testing setup is shown in the figure below: 
 

Fig. 3. Typical RF System Test Setup 

The RF system developer can start with simulation, simulating 
the RF signal source, and testing in AWGN (Additive White 
Gaussian Noise).  The next step is to add RF channel effects 
such as multipath and Doppler.  Once the physical system is 
built, the RF test engineer tests in the lab using RF test 
equipment including RF signal and noise generators, RF 
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channel emulators, and RF test and measurement equipment 
like spectrum analyzers, vector signal analyzers, etc.  Typically, 
output signals are captured for additional detailed analysis 
using the same signal analysis tools used during simulation (e.g. 
MATLAB).   
 
Once laboratory testing is completed, then the system needs to 
be tested OTA.  Wireless OTA testing can start in anechoic 
chambers to remove the effects of interference from the 
external environment, effectively repeating the cabled 
laboratory testing flow with same laboratory signal generators, 
analyzers and capture equipment.  This allows controlled 
testing to verify RF system performance.   
 
To repeat the same tests outside exposes the test scenarios to 
the unpredictable nature of the actual RF environments 
including unknown channel effects, and interference and also 
requires rugged, weather-proof RF test equipment or covered 
site infrastructure to protect the expense RF laboratory 
equipment.   

B. New Augmented Workflow Incorporating Emulated RF 

Scenes 

The ability to create realistic RF scenes that capture the 
complexity and expressiveness of actual RF environments can 
be incorporated throughout the typical RF signal development 
and testing lifecycle including initial testing and regression 
testing.  A new augmented workflow is shown in the figure 
below: 
 

Fig. 4. New RF System Testing Workflow Incorporating Emulated RF Scenes 

The revised laboratory test setup is shown in the figure below. 
 

Fig. 5. New RF System Testing Workflow Incorporating Emulated RF Scenes 

The revised test setup provides the ability to combine specific 
signal generators and the emulated RF environment through an 
RF coupler to enable testing in realistic environments.  Test 
scenarios include RF scenes that represent congested or 
contested environments and as well as incorporation of the 
emulated signal of interest within the scene as either an 
internally generated or imported baseband I/Q file.   
 
The OTA test setup is shown in the figure below.  Our 
Mockingbird system is a small rugged system that supports 
both laboratory and field testing.  Multiple Mockingbird 
systems can be incorporated in outdoor testing to provide 
emulated RF scenes as well as capture signal data for post-test 
RF signal analysis and system verification.  This setup also 
supports the RF learning process.  RF learning sessions could 
be conducted prior to the test to verify system performance in 
the laboratory with the learned RF environment.  
 

Fig. 6. OTA Test Setup Incorporating RF Scenes and RF Learning 

VI. RF TESTING IN CONGESTED AND CONTESTED 

ENVIRONMENTS 

This section uses the augmented test workflow and test setups 
described in the previous section to describe the process of 
testing in both congested (unintentional interference) and 
contested (intentional interference or jamming) scenarios.   

A. Congested Environments 

Wireless devices are exploding producing a very crowded RF 
environment.  It has become critical to test RF systems in a 
variety of RF environments from lightly to heavily congested, 
with various narrow and wideband systems.  The RF scene 
generation process described earlier can be used to create rich 
sophisticated RF scenes to emulate congested environments at 
various levels of congested and with enough variability to allow 
testing over a number of unique RF environments with similar 
statistics (e.g. levels of congestion, and temporal traffic 
patterns).  The actual waveform transmission patterns are 
logged providing ground truth for each test scenario.  Since the 
RF scenes are randomly generated instead of a simple 
record/playback, test scenarios can be continuously run 
providing long test cycles to evaluate the performance of RF 
systems.  Testing can be refined in the lab over very long test 
cycles with various congestion levels, and then repeated outside 
in OTA testing with the same emulated RF environments plus 
the addition of actual RF channel effects.  This allows a 
rigorous and planned sequential testing approach from 
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simulated testing in noise only environments, multipath and 
time varying channels, and congested environments, followed 
by lab testing with actual RF systems using emulated channel 
effects and RF environments, then outdoor testing in actual RF 
channels but with the same emulated RF environments used in 
the lab.   
 
For deployed systems that experience actual RF environments, 
the RF learning module can be used to learn specific RF 
environments and then recreate in the lab to allow refinement 
of the RF system performance in a cost-effective and controlled 
environment.   These challenging RF environments can become 
part of the corpus of test data used to characterize RF system 
performance of new algorithms and capabilities.  RF learned 
environments can also be used perform site surveys prior to 
deployment, to understand the RF environment and assist in 
evaluation of the best deployment locations for optimal 
performance.   

B. Contested Environments 

Contested environments add intentional interference or 
jammers to the unintentional interference of the congested 
environment described in the previous section.  Jammers 
typically can be classified as constant jammer, random jammer, 
or reactive jammer.  Constant jammers transmit a jamming 
signal continuously over a frequency band of interest.  Random 
jammers randomly transmit burst signals that can have different 
frequency bands or time durations (i.e. spectral regions of 
support).  Reactive jammers, sense the environment and jam the 
frequency bands with signal activity.  RF systems mitigate 
jamming through spread spectrum waveforms (waveform 
resiliency) or spectrum maneuverability (jammer avoidance).  
For spectrum maneuverability testing, the RF system 
performance should be characterized in various levels of 
unintentional and intentional interference (both congested and 
contested environments).  The RF scenes can be created with 
specific jamming waveforms including narrow band and 
wideband signals.  The RF test signals toolkit supports tones, 
stepped frequency and frequency sweeps (i.e. chirp signal).  
The digital modulation toolkit and OFDM toolkit provides 
various broadband signals available as jamming signals.  
Jamming signals can also be created to emulate the actual 
communications waveform parameters to affect receiver 
synchronization and demodulation processes.  Random traffic 
patterns enable the creation of various emulated jammer 
behavior to support additional test scenarios.  
 
The RF learning module can learn the behavior of actual 
jammers and recreate that pattern with the actual learned RF 
spectral shape (shaped white noise jammer), as well as add the 
traffic pattern to an internal generated signal like the swept 
frequency or chirp signal.   

VII. TRAINING AND TESTING RF ML APPLICATIONS 

New RF ML applications are constantly evolving including 
Automated Modulation Recognition, RF emitter 
Fingerprinting, Dynamic Spectrum Access/Sharing, and RF 
Jammer Behavior Recognition.  ML techniques learn the 

optional solution directly from the data, as opposed to being 
designed based on subject matter experts.  In order for ML 
algorithms to perform correctly, they require very large data 
sets that are both representative and comprehensive covering 
any and all environmental conditions that are expected in the 
actual physical environment.  These RF data sets are broken up 
into training, validation and testing data sets which increases 
the volume of data needed.  Each phase requires an independent 
data set.  Training uses labeled data sets to measure the error in 
the output (prediction error, classification error, etc) which is 
used as feedback to the system to adjust the performance.  
Validation uses an independent data set to test the system based 
during training.  The optimal configuration learned during 
training is fixed and the validation data set is used to measure 
the system performance.  The cycle of training and validation 
is repeated while adjusting the system configuration to achieve 
the desired level of system performance.  Then a final testing 
data set is used that is independent of the training and validation 
test sets to verify system performance.   
 
Acquiring and storing the large RF data sets required is an 
expensive activity.  Leveraging emulated RF scenes and 
learned RF environments that can be recreated in the laboratory, 
and generated and consumed in real-time provides a constant 
and representative RF data corpus that can be used to enable 
continuous, iterative training, testing and system refinement 
cycles.  In addition, the logging features of the actual 
transmitted RF scene provide the ground truth required to 
determine the training error used as feedback to drive the 
optimization algorithm. The figure below shows how emulated 
RF scenes and RF learning could be incorporated in the RF ML 
development and testing process. 

Fig. 7. RF ML Process Incorporating RF Learning and Emulated RF Scenes 

Typically, RL ML data sets are created from simulations.  This 
provides a great initial step in characterizing the ML algorithm 
during the algorithm development process (simulated 
algorithms and environments).  Once the ML algorithm is 
implemented on an actual RF system, the integration of the 
physical system with the simulated environment becomes more 
difficult.  This is another area where emulated RF environments 
can provide an improved testing process.  The emulated 
environments can be used in a lab setting with other RF test 
instruments such as signal generators, spectrum analysis, and 
RF channel emulators to create a realistic environment that is 
more readily consumed by the physical RF system under test.   
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Adding learned RF environments increases the realism and 
variability needed to train and validate the RF ML system under 
test.  Recorded or captured data has been leveraged in the past 
to add realism to the simulated data sets, but captured data is of 
finite duration and therefore must be randomized or shuffled to 
provide variability to the data set.  Since the ML algorithms 
learn from the data, if there is not enough variability in the 
training data set the ML algorithm is susceptible to over-fitting.  
Using a contrived example, an ML image recognition algorithm 
is trained to classify fruit as either lime, lemon or apple but only 
uses red apples in the training set.  If a green apple is 
encountered during actual operation, the ML classifier may 
misclassify the apple as a lime since they are both green.  The 
use of learned RF environments to generate RF scenes provides 
a continuous stream of data that is statistically similar to the 
actual environment and provides both the realism and 
variability needed to optimize the ML system. 
 
Upon completion of the training and validation process, testing 
could be performed both indoors and outdoors.  Outdoor testing 
enables characterization with actual RF channel conditions but 
utilizes the emulated environment.  Therefore, the testing is 
focused on evaluating the system performance primarily due to 
the actual RF channel providing better control over the test 
variables.   

VIII. CONCLUSIONS 

RF systems must increasingly operate in harsh and dynamic RF 
environments.  As the complexity of the RF environment 
increases, so do the RF algorithms.  New innovative RF ML 
techniques provide the ability to learn and adapt to these 
complex RF environments but require a vast amount of RF data 
to provide realistic environments with enough variability to 
allow the RF ML algorithm to converge to the optimal solution.  
Simulated environments provide a means of testing new RF 
algorithms in the early design and prototyping phases but are 
difficult to replicate all the complexity of actual RF 

environments and channel impairments.  OTA testing provides 
the final system performance evaluation but is very expensive 
to conduct with the same expressiveness and ease of use as 
simulated environments.  We presented an approach to bridge 
the gap between these two test environments using emulated RF 
scenes and learned RF environments.  The emulated RF scenes 
provide a repeatable process that enables statistically similar 
data sets to be continuously generated providing real-time 
testing and evaluation.  Adding the capability to learn from 
actual RF environments and recreate these emulated RF 
environments in the lab provides a very cost-effective 
mechanism to cost effectively bring the outdoor test 
environment into the laboratory.  We have implemented RF 
scene generation and RF learning on a small, rugged, software 
defined RF testing instrument we call Mockingbird.  
Mockingbird enables agile RF testing in the lab and the field, 
allowing RF testing in the lab with learned RF environments, 
and repeated in the field using the same RF environments but 
now expanding to include actual RF channel conditions.  
Emulated RF scenes and RF environmental learning provides 
another tool in the RF test engineers toolbox, augmenting the 
tried and true sophisticated and highly accurate testing 
procedures used today with an agile, realistic testing 
methodology that enhances both laboratory and field testing.   
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