
Using Raspberry Pi to
Control Your Oscilloscope
––
APPLICATION NOTE

2 | TEK.COM

APPLICATION NOTEUsing Raspberry Pi to Control Your Oscilloscope

Introduction

Raspberry Pi is a single-board small computer originally used

as a tool to teach computer science to students. It has since

grown in popularity due its compact size, low cost, modularity

and open design. Each revision has added more capability

to the original Raspberry Pi, and the computer is now widely

used in applications beyond education.

Because of its limited computing power, the Raspberry Pi

will not replace the regular PC in many areas. However, with

its compact size, flexible I/O interfaces, low cost and built-

in support for Python, it is an ideal platform to automate a

lab test bench or a manufacturing test rack to control the

instruments, capture waveform data and measurement

results, and act as a hub to manage data from the instruments

or remote access of the instruments.

This application note shows how to quickly set up a

Raspberry Pi to automate a Tektronix 2 Series MSO Mixed

Signal Oscilloscope and configure the instrument to control

it remotely. You can also watch how to configure the setup in

this video.

Setting up a Raspberry Pi

The setup for a Raspberry Pi as the controller PC for the lab

bench is simple.

Basic requirement and setup:

• Raspberry Pi 4 with Raspberry Pi OS (formerly Raspbian)

• Python 3.7 or above

• PyUSB 1.2.1

• PyVISA 1.11.3

• PyVISA-py 0.5.2

The communication support between the oscilloscope and

the Raspberry Pi is based on pyVISA.

Before starting the setup, make sure that the Raspberry

Pi's software components are up to date. If they are not

current, connect the Raspberry Pi to the network for the

software updates.

Figure 1: A quick setup for the Tektronix 2 Series MSO Mixed Signal Oscilloscope and a Raspberry Pi.

http://tek.com
https://www.tek.com/en/video/how-to/how-to-setup-raspberry-pi-to-remotely-control-the-2-series-mso

TEK.COM | 3

APPLICATION NOTEUsing Raspberry Pi to Control Your Oscilloscope

From the command prompt, enter

sudo apt update && sudo apt upgrade -y

The update may take a few minutes or more, depending on when the system was last updated.

A few Python 3.x modules will be needed for setup. To install all the required modules, from the command prompt, enter the

following commands for the update:

• sudo python3 -m pip install pyvisa

• sudo python3 -m pip install pyvisa-py

• sudo python3 -m pip install PyUSB

Figure 2: Required Python 3 modules for instrument control.

http://tek.com

4 | TEK.COM

APPLICATION NOTEUsing Raspberry Pi to Control Your Oscilloscope

In some cases, a Raspberry Pi will only allow the root user to access the USB devices. To ensure that all users have access,

modify the rule in the Raspberry Pi.

From the command prompt, enter

• sudo su

• echo 'SUBSYSTEM=="usb", MODE="0666", GROUP="usbusers"' >> /etc/udev/rules.d/99-com.rules

• exit

Figure 3: Modify the rule to allow all users to access the USB devices.

To commit the changes, restart the Raspberry Pi. From the command prompt, enter

• sudo reboot

Setting up the connection with a Tektronix 2 Series MSO Mixed Signal Oscilloscope

Most entry-level oscilloscopes come with the USB device port for connectivity. To connect a Raspberry Pi with a 2 Series MSO

• Connect the USB device port on the right side of the instrument to the Raspberry Pi.

• Check if the Raspberry Pi is able to detect the 2 Series MSO. From the command prompt, enter

 – lsusb

Figure 4: “Tektronix, Inc." is listed as one of the vendors of the attached USB devices.

http://tek.com

TEK.COM | 5

APPLICATION NOTEUsing Raspberry Pi to Control Your Oscilloscope

The “Tektronix, Inc." device refers to the oscilloscope. If the Raspberry Pi does not detect the Tektronix device, repeat the steps

above with a different USB port or cable.

To validate that the Raspberry Pi can communicate with the oscilloscope, launch Python 3.0. From the command prompt, enter

• python3

Then enter the following to check the oscilloscope's VISA descriptor:

• >>> import pyvisa

• >>> rm = pyvisa.ResourceManager()

• >>> rm.list_resources()

• ('ASRL/dev/ttyAMA0::INSTR', 'USB0::1689::261::PQ100125::0::INSTR')

• >>> inst = rm.open_resource('USB0::1689::261::PQ100125::0::INSTR')

• >>> print(inst.query("*IDN?"))

The return from the rm.list_resources() will display the VISA descriptor. After it lists the correct VISA descriptor, enter

• inst = rm.open_resource(<VISA descriptor>) to connect the Raspberry Pi to the oscilloscope.

To confirm the communication, enter an *IDN? query. If the return string lists the correct model number and serial number, then
the Raspberry Pi is able to communicate with the oscilloscope. (See Figure 5 below.)

Figure 5: Validate the communication using *IDN? query command.

In addition to the 2 Series MSO, other entry-level oscilloscopes such as the Tektronix TBS2000B and TBS1000C Digital Storage

Oscilloscopes are also compatible with the Raspberry Pi setup.

http://tek.com
https://www.python.org/download/releases/3.0/

6 | TEK.COM

APPLICATION NOTEUsing Raspberry Pi to Control Your Oscilloscope

Figure 6: Connecting to the Tektronix TBS1000C Digital Storage Oscilloscope.

Example script

Following is a Python example script for querying waveform data and plot. This example script can also be downloaded and

copied from the attached file named example_script.txt

import time # std module

import pyvisa as visa # http://github.com/hgrecco/pyvisa - pyvisa for connectivity

import matplotlib.pyplot as plt # http://matplotlib.org/ - for plotting

import numpy as np # http://www.numpy.org

VISA descriptor to identify the test and measurement device

Please update the VISA descriptor from the query result from pyvisa

visa_address = 'USB0::1689::261::Q300209::0::INSTR'

rm = visa.ResourceManager()

scope = rm.open_resource(visa_address)

scope.timout = 10000 # ms

scope.encoding = 'latin_1'

scope.read_termination = '\n'

scope.write_termination = None

scope.write('*cls') # clear ESR

scope.write('header OFF')

http://tek.com

TEK.COM | 7

APPLICATION NOTEUsing Raspberry Pi to Control Your Oscilloscope

acquisition

scope.write('acquire:state OFF') # stop

scope.write('acquire:stopafter SEQUENCE;state ON') # single

r = scope.query('*opc?')

curve configuration

scope.write('data:encdg SRIBINARY') # signed integer

scope.write('data:source CH1')

scope.write('data:start 1')

acq_record = int(scope.query('horizontal:recordlength?'))

scope.write('data:stop {}'.format(acq_record))

scope.write('wfmoutpre:byt_n 1') # 1 byte per sample

data query

bin_wave = scope.query_binary_values('curve?', datatype='b', container=np.array, chunk_size =
1024**2)

retrieve scaling factors

wfm_record = int(scope.query('wfmoutpre:nr_pt?'))

pre_trig_record = int(scope.query('wfmoutpre:pt_off?'))

t_scale = float(scope.query('wfmoutpre:xincr?'))

t_sub = float(scope.query('wfmoutpre:xzero?')) # sub-sample trigger correction

v_scale = float(scope.query('wfmoutpre:ymult?')) # volts / level

v_off = float(scope.query('wfmoutpre:yzero?')) # reference voltage

v_pos = float(scope.query('wfmoutpre:yoff?')) # reference position (level)

disconnect

scope.close()

rm.close()

create scaled vectors

horizontal (time)

total_time = t_scale * wfm_record

t_start = (-pre_trig_record * t_scale) + t_sub

t_stop = t_start + total_time

scaled_time = np.linspace(t_start, t_stop, num=wfm_record, endpoint=False)

vertical (voltage)

unscaled_wave = np.array(bin_wave, dtype='double') # data type conversion

scaled_wave = (unscaled_wave - v_pos) * v_scale + v_off

plotting

plt.plot(scaled_time, scaled_wave)

plt.title('channel 1') # plot label

plt.xlabel('time (seconds)') # x label

plt.ylabel('voltage (volts)') # y label

print(“look for plot window...")

http://tek.com

8 | TEK.COM

APPLICATION NOTEUsing Raspberry Pi to Control Your Oscilloscope

plt.show()

Setting up the TightVNC (optional)

This is optional for the user who prefers to set up VNC on the Raspberry Pi to remote into it.

To update to the latest version, from the command prompt, enter

• sudo apt update && sudo apt upgrade -y

Then to install the VNC Server, from the command prompt, enter

• sudo apt install tightvncserver

For the initial setup for the VNC server, from the command prompt, enter

• vncserver

Because this is the initial setup, the command prompt will ask for a password. Enter a password composed of eight characters.

The password will automatically be shortened to eight characters.

Reenter the password for verification.

When asked if it is a viewer-only password, select No.

On the other PC, install the TightVNC client at tightvnc.com.

Once installed, start the TightVNC Viewer. In the connection window, enter the Raspberry Pi's IP address and the default port
number (5901).

Figure 7: TightVNC viewer connection window.

http://tek.com
http://tightvnc.com

TEK.COM | 9

APPLICATION NOTEUsing Raspberry Pi to Control Your Oscilloscope

To look up the IP address in Raspberry Pi, use the command ifconfig.

Figure 8: Look up the IP address using the command ifconfig.

Figure 9: TightVNC viewer on the remote PC.

http://tek.com

Find more valuable resources at tek.com

Copyright © Tektronix. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that
in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. The MIPI specification diagrams
used in this document are copyright 2007-2022 by MIPI Alliance, Inc. and reprinted with permission. C-PHYSM and D-PHYSM are service marks of MIPI Alliance. All other third-party
trademarks are the property of their respective owners. All other trade names referenced are the service marks, trademarks or registered trademarks of their respective companies.
122122 SBG 48W-73971-0

Contact Information:
 Australia 1 800 709 465

Austria* 00800 2255 4835

Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777

Belgium* 00800 2255 4835

Brazil +55 (11) 3530-8901

Canada 1 800 833 9200

Central East Europe / Baltics +41 52 675 3777

Central Europe / Greece +41 52 675 3777

Denmark +45 80 88 1401

Finland +41 52 675 3777

France* 00800 2255 4835

Germany* 00800 2255 4835

Hong Kong 400 820 5835

India 000 800 650 1835

Indonesia 007 803 601 5249

Italy 00800 2255 4835

Japan 81 (3) 6714 3086

Luxembourg +41 52 675 3777

Malaysia 1 800 22 55835

Mexico, Central/South America and Caribbean 52 (55) 88 69 35 25

Middle East, Asia, and North Africa +41 52 675 3777

The Netherlands* 00800 2255 4835

New Zealand 0800 800 238

Norway 800 16098

People’s Republic of China 400 820 5835

Philippines 1 800 1601 0077

Poland +41 52 675 3777

Portugal 80 08 12370

Republic of Korea +82 2 565 1455

Russia / CIS +7 (495) 6647564

Singapore 800 6011 473

South Africa +41 52 675 3777

Spain* 00800 2255 4835

Sweden* 00800 2255 4835

Switzerland* 00800 2255 4835

Taiwan 886 (2) 2656 6688

Thailand 1 800 011 931

United Kingdom / Ireland* 00800 2255 4835

USA 1 800 833 9200

Vietnam 12060128

* European toll-free number. If not

accessible, call: +41 52 675 3777
Rev. 02.2022

tek.com
http://tek.com

import time # std module

import pyvisa as visa # http://github.com/hgrecco/pyvisa - pyvisa for connectivity

import matplotlib.pyplot as plt # http://matplotlib.org/ - for plotting

import numpy as np # http://www.numpy.org

VISA descriptor to idenify the test and measurement device

Update the VISA descriptor of your scope

visa_address = 'USB::0x0699::0x0105::Q300209::INSTR'

rm = visa.ResourceManager()

scope = rm.open_resource(visa_address)

scope.timout = 10000 # ms

scope.encoding = 'latin_1'

scope.read_termination = '\n'

scope.write_terminatino = 'None'

scope.write('*cls') # clear ESR

scope.write('header OFF')

#scope.write('autoset EXECUTE')

#r = scope.query('*opc?')

acquisition

scope.write('acquire:state OFF') # stop

scope.write('acquire:stopafter SEQUENCE;state ON') # single

r = scope.query('*opc?')

curve configuration

scope.write('data:encdg SRIBINARY') # signed integer

scope.write('data:source CH1')

scope.write('data:start 1')

acq_record = int(scope.query('horizontal:recordlength?'))

scope.write('data:stop {}'.format(acq_record))

scope.write('wfmoutpre:byt_n 1') # 1 byte per sample

data query

bin_wave = scope.query_binary_values('curves?', datatype='b', container=np.array, chunk_size = 1024**2)

retrieve scaling factors

wfm_record = int(scope.query('wfmoutpre:nr_pt?'))

pre_trig_record = int(scope.query('wfmoutpre:pt_off?'))

t_scale = float(scope.query('wfmoutpre:xincr?'))

t_sub = float(scope.query('wfmoutpre:xzero?')) # sub-sample trigger correction

v_scale = float(scope.query('wfmoutpre:ymult?')) # volts / level

v_off = float(scope.query('wfmoutpre:yzero?')) # reference voltage

v_pos = float(scope.query('wfmoutpre:yoff?')) # reference position (level)

disconnect

scope.close()

rm.close()

create scaled vectors

horizontal (time)

total_time = t_scale * wfm_record

t_start = (-pre_trig_record * t_scale) + t_sub

t_stop = t_start + total_time

scaled_time = np.linspace(t_start, t_stop, num=wfm_record, endpoint=False)

vertical (voltage)

unscaled_wave = np.array(bin_wave, dtype='double') # data type conversion

scaled_wave = (unscaled_wave - v_pos) * v_scale + v_off

plotting

plt.plot(scaled_time, scaled_wave)

plt.title('channel 1') # plot label

plt.xlabel('time (seconds)') # x label

plt.ylabel('voltage (volts)') # y label

print("look for plot window...")

plt.show()

