Digital LCR Meter

LCR-745(G)
The LCR-745 is a CPU controlled digital LCR meter with automatic and manual ranging. Direct resistance, capacitance and inductance measurements of components in equivalent series and parallel modes can be made with Quality (Q) and Dissipation (D) displayed simultaneously with inductance and capacitance. The unit's wide automatic measurement range greatly reduces the time associated with performing these component measurements compared with a manual LCR bridge. This makes the LCR-745 an ideal instrument for incoming inspection or final production test of components where ease of operation and high throughput are necessary. An offset function is available which can be used to cancel

- Measures L, C, R and D or Q
- Automatic Ranging and Circuit Mode Selection
- Offset Function Cancels Fixture L, C and R

■ +1.5 VInternal DC Bias

- 0 to +30 VExternal DC Bias
- 2, 4 or 5 Terminal Measurements
- 120 Hz or 1 kHz Test Frequencies
- 0.35\% Basic Accuracy
- Full Listener/Talker GPIB
any residual resistance, capacitance or inductance of the test leads of fixtures being used. In addition, the offset function can be used to normalize the value of a component under test to zero. The deviation (including polarity) from this normalized value of succeeding components will be displayed simplifying testing. Test frequencies of 120 Hz and 1 kHz are provided. In addition, an internal dc bias of 1.5 V is available with provision for the use of an externally applied bias of up to 30 V for the testing of electrolytic capacitors. Note: Existing LCR-745 units may be converted to GPIB operation (G Model). Call the factory for details.

Test Fixtures (Optional)

The LF-2351 test fixture has low-insertion force connectors for the rapid testing of both axial and radial lead components.

LC-2067 1 meter GPIB Cable LC-2068 2 meter GPIB Cable

```
KEY SPECIFICATIONS LCR-745(G)
```

MEASURED PARAMETERS
Resistance
Capacitance/Dissipation Factor
Inductance/Quality Factor
RESOLUTION
Inductance
$1 \mathrm{kHz}: 0.1 \mu \mathrm{H}-199.9 \mathrm{H}$ in 7 ranges, 3 $1 / 2$ digits
$120 \mathrm{~Hz}: 0.001 \mathrm{mH}-199.9 \mathrm{H}$ in 6 ranges,
3 $1 / 2$ digits
Capacitance
1 kHz : $0.1 \mathrm{pF}-1999 \mu \mathrm{~F}$ in 8 ranges, 3 $1 / 2$ digits
120 Hz: 1pF - $1999 \mu \mathrm{~F}$ in 7 ranges, 31/2 digits
Resistance
$0.001 \Omega-19.99 \mathrm{M} \Omega$ in 8 ranges, 31/2 digits

Dissipation
$0.001-1.999$ in 8 ranges,
31/2 digits
Quality
0.5 - 99.9 in 8 ranges,

3 digits
GENERAL
Measured Method
2,4, or 5 terminal
Measurement Mode
Auto, series or parallel
Ranging
Auto or manual with over- and under-
range indication
Test Frequencies
1 kHz and 120 Hz
Test Conditions
Parallel measurement: 1V rms Series measurement: Constant current

DC Bias (Capacitance Measurements)
Internal: +1.5 V
External: 0 to +30 V
Deviation Measurement Indicates (measured value-reference value) ± 1 count
Measurement Time
Auto-ranging
<0.2 s-2 s maximum
Manual Ranging
Maximum time within correct range

Parameter(s)	TEST FREQUENCY	
	120 Hz	1 kHz
RLC	0.4 s	0.25 s
L and Q	0.6 s	0.4 s
C and D		

Digital LCR Meter

KEYSPECIFICATIONS LCR-745(G) (cont'd.)

POWER REQUIREMENTS
$100,120,220,240 \mathrm{Vac} \pm 10 \%$
$50 / 60 \mathrm{~Hz}, 26 \mathrm{VA}$
PHYSICAL
Size (W x H x D)
$153 / 4 \times 4 \times 117 / 8 \mathrm{in}$.
$400 \times 100 \times 300 \mathrm{~mm}$
W eight
$12 \mathrm{lbs} ., 5.5 \mathrm{~kg}$

SUPPLIED ACCESSORIES
AC Cord
Spare Fuse
OPTIONAL ACCESSORIES
Fixture (LF-2350)
Fixture (LF-2351)
1 Meter GPIB Cable (LC-2067)
2 Meter GPIB Cable (LC-2026)

Accuracy

L		1 kHz	$199.9 \mu \mathrm{H}$	1.999 mH	19.99 mH	199.9 mH	1999 mH	19.99 H	199.9 H
		120 Hz	1.999 mH	19.99 mH	199.9 mH	1999 mH	19.99 H		199.9 H
(1)	-wnos	1 kHz	$\pm(1 \% \pm 3$ counts)	$\pm(0.35 \% \pm 2$ counts)					
		120 Hz	$\pm(1.5 \% \pm 3$ counts)	\pm ($0.4 \% \pm 3$ counts)					
Accuracy	$\left[\begin{array}{l} \infty \\ \hline \end{array}\right]$	1 kHz				\pm ($0.5 \% \pm 3$ counts)			$\pm(1 \% \pm 3$ counts)
		120 Hz				$\pm(0.5 \% \pm 3$ counts)			\pm (1.5\% ± 3 counts)
	AUTO	$1 \mathrm{kHz} / 120 \mathrm{~Hz}$	Same as		-wner		Same as $\{$		
(2)	-wos	$1 \mathrm{kHz} / 120 \mathrm{~Hz}$	$\begin{aligned} & \pm 5 \times(1+Q) \% \pm \\ & (10+2000 / \text { L }) \text { counts } \end{aligned}$	$\pm 2 \times(1+Q) \% \pm(10+2000 /\llcorner)$ counts					
$\begin{gathered} \text { Q } \\ \text { Accuracy } \end{gathered}$	$\left[\begin{array}{c} \infty \\ \hline \end{array}\right]$	1 kHz				$\pm 2 \times(1 \times Q) \% \pm(10+4 / 50)$ counts			$\pm 5 \times(1+Q) \% \pm(10+4 / 50)$ counts
		120 Hz				$\pm 3 \times(1+Q) \% \pm(10+L / 50)$ counts		$\pm 5 \times(1+Q) \% \pm(10+4 / 50)$ counts	
	AUTO	$1 \mathrm{kHz} / 120 \mathrm{~Hz}$	Same as		-wos			Same as	$\left.-c_{m}^{\infty}\right]$

Notes: (1) When $Q \geq 1$
(2) L count is above $50, Q \leq 50$, L in the specifications denotes number of counts

Notes: (3) When $D \leq 1,000$ (4) C count is above $50, D \leq 1,000, C$ in the specifications denotes number of counts

R		1.999Ω	19.99Ω	199.9	1999Ω	19.99k Ω	199.9k Ω	$1999 \mathrm{k} \Omega$	$19.99 \mathrm{M} \Omega$
R Accuracy	-mos	$\pm(1 \% \pm 3$ counts)	\pm ($0.35 \% \pm 2$ counts)						
	[5m-				\pm ($0.5 \% \pm 3$ counts)				$\pm(1 \% \pm 3$ counts)
	AUTO	Same as mos				Same as			

