

Synthesized Function Generators with Versatile Arbitrary Waveform Capabilities

Technical Data

PM 5136: 5 MHz

High performance at a budget price

PM 5138A: 10 MHz

Output voltage of 40 Vpp

PM 5139: 20 MHz

24 Arbitrary waveform-memories

Fluke PM5136, PM5138A, PM5139 Synthesized Function Generators with arbitrary waveform

Synthesized Function Generator

PM 5193: 50 MHz

- Quartz crystal precision for long-term stability
- 10 MHz external synchronization (PM 5193S)
- Video modulation facilities (PM 5193V)

Fluke PM5193 Synthesized Function Generator

PM 5136

- High performance at a budget price
- Frequency range from 0.1mHz to 5MHz (20Vpp)
- High accurate signals, low distortion
- In practice proved mechanical and electronic design
- Large backlit display and easy menu controlled operation
- Continuously variable symmetry
- 7 Standard waveforms: sine, triangle, square, pos/neg pulse, pos/neg/ sawtooth
- Internal and external modulation modes: AM, FM, Lin. Sweep, Log. Sweep and Burst
- · 9 Setting memories
- GPIB/IEEE 488.2 interface (optional)

PM5138A as PM5136, incl.:

- Output voltage of 40 Vpp for all waveforms, including arbitrary
- Frequency from 0.1 mHz to 10 MHz
- 24 Arbitrary waveformmemories
- Arbitrary functionality supported via AnyWave[™] software package
- AnyWave[™] software included
- 9 additional setting memories to store frequently used settings
- Arbitrary-waveforms, Gate and PSK modulation
- Selectable output impedance, 50Ω or 600Ω
- GPIB or RS 232 interface (optional)

PM5139 as PM5138A, incl:

- Frequency from 0.1 mHz to 20 MHz. (20Vpp)
- 10 Standard waveforms including sine and trainle pulses, haversine

- Programmable modulation frequencies
- Low output impedance Z_0 .

Wide range of applications

These top-value generators, built on years of experience, combine high precision with easy operation, making it the ideal choice for a wide range of applications like automotive, mechanical, calibration, telecom, audio, componenttesting, medical, education and training. Applications that require higher frequencies are perfectly suited for the PM5139. while the PM5138A is extremely usefull when higher output voltages are required. This higher output, 40 Vpp, available for the complete bandwidth up to 20 MHz and also for the 24 arbitrary waveforms, makes this instrument ideal for tranducer simulation up to 14 Vrms for the automotive industry.

Simple, menu-controlled operation

To change a setting, all that's needed is to make a selection from the 5-line menu and operate the corresponding buttons. Specific functions can be accessed directly via control buttons which are conveniently located in a separate field. For example: store or recall of instrument-settings. Numeric values are set precisely by a large rotary control (which can be disabled to secure the setting). At all times, you get a clear indication of the instrument setting by the large backlit LCD display.

Accurate setting of modulation parameters

Modulation parameters such as modulation depth, deviation, number of cycles and start/stop phase can be set with high accuracy. The modulation/trigger source is programmable with a wide frequency range of 1 mHz to 100 kHz, and an accuracy of 0.1%. The sweep parameters f_{start} , f_{stop} , time, lin/log and sweep mode are independently programmable.

Versatile modulation mode selection

Modulation modes such as AM. FM and sweep are selected from the modulation mode menu. All waveforms can be modulated, even the userdefined arbitrary waveforms. The burst mode can be triggered via the internal modulation/trigger source or via the external modulation input. Bursts may also be manually triggered by a front panel key. The single-shot mode in burst can be used with all waveforms, including arbitrary.

Arbitrary waveform function via GPIB/IEEE-488 / RS232 link

Both the PM 5138A and PM 5139 with GPIB/IEEE-488 or RS232 installed, provide the versatile arbitrary waveform capability, a powerful aid to the generation of custom test signals. User defined arbitrary waveforms can be created and modified on a PC, using Fluke's AnyWave[™] software package. and then downloaded to the generator. A waveform captured by a Digital Oscilloscope can also be transferred to a PC and modified by the same software. This package is a powerful tool for creating, capturing and modifying the desired signals, and transferring them guickly and easily to the function generator.

Application example:

In mechanical vibration analysis, such as shock testing, a DSO can capture the output of an accelerometer and transfer the vibration waveform either to a PC for modification or directly to the PM 5138A or PM 5139 to reproduce it when needed, without having to repeat the actual experiment. The waveform can then be sent continuously, as a burst for a defined number of cycles, or when triggered by an external source.

Synthesizer/function generator PM5193

- Wide frequency range: 0.1 mHz to 50 MHz
- Quartz crystal precision for long-term stability
- Full range of standard waveform functions
- Choice of internal and external modulation modes
- 8-digit resolution for high precision
- Programmable settings speed operation
- IEEE-488 interface standard.
- Versatile rear-panel inputs and outputs
- 10 MHz external synchronization (PM 5193S)
- Video modulation facilities (PM 5193V)

If you want precision, versatility and value in a waveform generator, that covers your requirements exactly, choose the top-of-theline PM 5193, with its 50 MHz frequency range. This model offers you a comprehensive choice of waveform functions, AM, FM, gating and burst modes extend flexibility, and can be modulated either internally by the generator, or by an external source. Linear and logarithmic sweeps with fully independent start and stop frequencies and sweep times can also be made with three different sweep modes (sweep and flyback, sweep and hold, sweep up and down).

Quartz crystal precision

The quartz crystal precision of this generator gives you the assurance of reproducible frequency settings within very closely defined limits. Aging rates for these crystals are less than 1 p.p.m./year. Coupled with the negligible setting error (<1 p.p.m / year), this generator gives you true longterm reference performance.

10 MHz external synchronization

For applications demanding traceability to an external standard, the PM 5193S generator can be synchronized with external standards at 10 MHz, or sub-harmonics such as 1, 2 or 5 MHz.

Video modulation facilities

The PM 5193V adds video modulation facilities. The standard IEEE-488 interface makes this instrument ideally suited for automated testing routines on video equipment, for example testing the IF units of video recorders and CTV receivers.

Model	PM 5136	PM 5138A	PM 5139	PM5193
			•	
Frequency characteristics				
Nominal Range	0.1 mHz – 5 MHz	0.1 mHz - 10 MHz	0.1 mHz – 20 MHz	0.1 mHz – 50 MHz
Operational Range				
Sine, pos/neg pulse	5 MHz	10 MHz	20 MHz	50 MHz
Square wave	5 MHz	10 MHz	20 MHz	20 MHz
Triangle	500 kHz	500 kHz	500 kHz	200 kHz
Pos./neg. sawtooth	20 MHz	50 kHz	50 kHz	20 kHz
Sine , triangle pulse			50 kHz	
Haversine			50 kHz	50 kHz
		4_ digits, max. 0.1 mHz		8 digits, max. 0.1 mHz
Resolution	10 Hz (f _C >200kHz) ^{*3}			
Setting error		$\pm 2 \times 10^{-6} (\pm 2 \text{ ppm})$		± 1 x 10 ⁻⁶
		(f _c ≥5MHz)	(f _C >10MHz)	
Residual FM deviation		<10ppm, 1ppm typical	<10ppm, 1ppm typical	
(measuring bandwidth				
10Hz-20kHz)	<100Hz, 13Hz typical	(f _C ≤5MHz)	(f _C ≤10MHz)	
		<100Hz, 13Hz typical	<100Hz, 13Hz typical	
Phase noise at 1kHz		< -80dBc/Hz		<-80dBc/Hz (f _c <2MHz)
distance from carrier				_
Phase jitter rms, (measuring				<3mrad
bandwidth 10Hz-20kHz)				(f _C <2MHz)
Frequency jitter rms (meas.				<0.02%, <1200Hz
Bandw 10Hz-20kHz)				f _C ≥2MHz)
Temperature coëfficient		<±0.2]	opm / K	
Aging	<±1ppm / year			
Drift		<±0.3ppm	in 7 hours	
				f _{REF} =7.5-10MHz for
				programmed
Synchronization by an		f _{REF} =10MHz/1	N, N=1, 2, 310	frequency
external reference				$f_p \leq 2.147 MHz$ and
				f _{REF} =8.6±0.5MHz
				for f _P >2.147MHz
Output characteristics				
Main Output	1	0.6.1		
Connector BNC socket	500	Un front		On front, optional at rear
Impedance	500	5002 or 60002	50Ω or LOW Z ₀	5002
	LIFU < Omin	Short CI	$\frac{1}{100}$	11017 < 0
Max. external voltage	$\pm 15V < 311111$	5002: ±15V	50Ω : $\pm 15V < 3IIIII$	$\pm 12 v < 3 min$
8C veltore		independent of DC	$1 \text{ LOW } Z_0$: $\pm 12 \text{ V} \leq 311111$	
AC vonage		independent of DC	, setung within:	
Pangag	+ 10V sarindosar	+ 20W window	+ 10V mindow	+ 10V window
L resolution 1 mV	\perp 10V WIIIu0W	$\perp 200$ William	\perp 10V WIIIu0W	
I resolution 10mV	0 - 0.200 Vpp	0 - 0.400 Vpp	0 - 0.200 Vpp	0 = 0.200 Vpp
III resolution 100 mV	2.0 - 20.0 Vpp	0.40 - 4.00 Vpp	2.0 - 2.00 Vpp	2.1 20.0 Vpp
Acquiracy for AC voltages	$\geq 10 \text{mVnn}$	20 mVnn	> 10 mVnn	$\geq 2 \text{Vpp}$
Basic setting error *2	/> Iomvpp	> 20mvpp		> 2 v pp
	+2 00/2 1Uz < f < 200/2Uz			
Amplitude flatness *2	$\pm 2.0\%$, 1 Hz $\leq I_{C} \leq 200$ KHz			
f _a : 1Hz=200kHz	+0.03dB	+0.03dB	+0.03dB	+0.05dB
fa: 200kHz =5MHz	+0.07dB	±0.05dB	+0.07dB	+0.07dB
fa: 5MHz - 10MHz		+0.1dB	+0.1dB	+0.1dB
fa: 10MHz = 20MHz			+0.2dB	+0.2dB
fa: 20MHz =50MHz			<u>-0.200</u>	+0.5dB
		independent of A	setting within:	
	+ 10V window	+ 20V window	+ 10V window	+ 10V window
Bange (open circuit)	101 WILLOOW	+10V resolut	tion 100mV	
Error limits *2	$\frac{1}{\pm 2.0\% \pm 50 \text{mV}} \qquad \frac{1}{\pm 2.0\% \pm 100 \text{mV}} \qquad \frac{1}{\pm 2.0\% \pm 50 \text{mV}} \qquad \frac{1}{\pm 2.0\% \pm 5$			
TTL Output 0/5V. Z.=500		BNC (on rear panel	BNC on front
Fan-out	>4 TTL inputs			> 5 TTL inputs
		+		· •

Model	PM 5136	PM 5138A	PM 5139	PM5193
	•			
Waveforms				
Asymmetrie				
$f_C \le 20 kHz$	1% - 99%, resolution	1% sine, square, triar	ngle, pos./neg. pulses	
f _C : 20kHz - 5MHz	20% - 80%, resolution	n 1% sq	uare, pos./neg. pulses	
Sinewave				
Frequency range	0.1 mHz – 5 MHz	0.1 mHz - 10 MHz	0.1 mHz - 20 MHz	0.1 mHz - 50 MHz
Output range open circuit	0 – 20 Vpp	0 - 40 Vpp	0 - 20 Vpp	0 - 20 Vpp
Distortion for output	10-70% of voltage range	25-100% of voltage	10-70% of voltage range	5-100% of voltage
voltages	maximum ^{*2}	range maximum ^{*2}	maximum ^{*2}	range maximum ^{*2}
and frequencies	1Hz - 500kHz	1Hz - 500kHz	1Hz - 500kHz	1Hz - 200kHz
Total harm.distortion	< 0.4%, 0.1% typical	< 0.4%, 0.1% typical	< 0.4%, 0.1% typical	< 0.5%, 0.2% typical
Harmonics fc:1Hz - 500kHz	<-48dBc	<-42dBc	<-48dBc	<-43dBc
Harmonics fc:500kHz-5MHz	<-40dBc	<-34dBc	<-40dBc	<-37dBc
Harmonics fc:5MHz-10MHz		<-30dBc	<-36dBc	<-34dBc
Harmonicsfc: 10MHz-20MHz			<-34dBc	<-30dBc
Harmonicsfc:20MHz-50MHz				<-30dBc
Subharmonics fc < 5MHz	<-60dBc	<-60dBc	<-60dBc	
Subharmonics fc > 5MHz		<-38dBc	<-38dBc	
Square, Positive / Negativ	e Pulses			
Frequency range	0.1 mHz – 5 MHz	0.1 mHz – 10 MHz	0.1 mHz – 20 MHz	0.1 mHz - 20 MHz for
				square and for pulses:
				0.1 mHz – 50 MHz
Output range open circuit	0 – 20Vpp	0 - 40Vpp	0 - 20Vpp	0.2 - 20Vpp
Pos/Neg. pulse open circuit	0 – 10 Vpp	0 – 20 Vpp	0 – 10 Vpp	1.0 - 10Vpp
Rise-/Fall time (at 50 % sym	metry) ^{*2}			
f _C : 0.1 mHz - 500 kHz		≤ 30 ns		10 ns typical < 11.5 ns
$f_{\rm C}$ > 500 kHz		≤ 20 ns		
f _C : 0.1mHz – 20MHz				Square: 10ns
				typ.<11.5ns
f _C : 0.1mHz – 50MHz				Pulse: 3ns typical
*0				<4.5ns
Aberration ¹²	< 2% (AC > 200 mVpp)			< 2 % (+20mV,range I)
Asymmetry	See Waveforms			
Triangle				
Frequency range		0.1 mHz - 500 kHz		0.1 mHz – 200 kHz
Output range	0 – 20 Vpp	0 – 40 Vpp	0 – 20 Vpp	0 – 20 Vpp
Linearity error	< 0.2% (f _c <20 kHz)			< 1% (f _C <200 kHz)
Asymmetry See Waveforms				
Positive / negative sawtoo	ih	0.1 11 50.111		0.1 11 00.111
Frequency range	0.10.11	0.1 mHz - 50 kHz	0.10.11	0.1 mHz - 20 kHz
Output range	0 - 10 Vpp	0 - 20 Vpp	0 - 10 Vpp	0 - 10 Vpp
Linearity error		<0.2% (f _C < 20kHz)		<1.0% (f _C < 20kHz)
Sine pulse, triangle pulse,	haversine		0.1 11 50.111	Haversine
Frequency range			0.1 mHz - 50 kHz	0.1 mHz – 50 kHz
Output range	interfered		0 - 10 Vpp	0 - 10 Vpp
Arbitrary (Instruments with interface)				
Frequency range	0.1 mHz - 20 kHz			
Sample frequency	max. 20.48 MS/s			
vvaveiorini niemones				
	1024 (10 Dills)			
venucai resolution	IU23 (IU DITS)			
	Via internace with a PC or direct with a DSU			
run scale output range		0 – 40vpp open circuit	U - ZUV pp open circuit	

Model	PM 5136	PM 5138A	PM 5139	PM5193
Modulation				
Modes	AM, FM, Burst, Sweep	AM, FM, Burst, Sw	reep, Gate, PSK	AM, FM, Burst, Sweep, Gate
АМ				
Carrier frequency	0.1 mHz - 5 MHz	0.1 mHz - 10 MHz	0.1 mHz - 20 MHz	0.1 mHz - 50 MHz
Carrier waveforms		All incl arbitrary ^{*1} excer	T PSK	All excl pulses
Internal AM	7.11	The more districtly , excep		
Medulation from on my	$1 kHz \pm 0.010$	10 Hz 100 lzHz mov zo	$radiation 1 Hz \pm 0.106$	
Modulation wewsform	1 KIZ ± 0.01%			10 IIZ = 200 KIZ
Modulation Donth		0.100% ro	achitica 10%	
		0-100%, ie		<2.00/
Envelope 1HD for $\leq 98\%$	<0.5% <0.1	B 0/ + 1 1	(0.5%)	<2.0%,
Mod. depth: $\leq 90\%$	<0.5%, <0.1	5% typical	<0.7%,	
\leq 90% and $I_C \leq$ 15MHz			<0.5%, <0.15% typical	
\leq 50%, fm = 100Hz - 20kHz				<1%
and $f_C \leq 30MHz$				
External AM				
Modulation frequency		0 to 2	00 kHz	
Modulation Depth		O-10	00%	
EnvelopeTHD $\leq 98\%$				< 1.5% *(50Ω)
Mod. depth: $\leq 90\%$	<0.5%, <0.1	5% typical	<0.7%,	
\leq 90% and fC \leq 15MHz		- <u>1</u>	<0.5%, <0.15% typical	
< 50% and fC < 30 MHz				<0.71% *(6000)
		*with	(O) output impedance of	f modulation signal source
FM		vvitii		i inouulation signal source
Carrier frequency	0.1 mHz = 5 MHz	0.1 mHz = 10 MHz	0.1 mHz = 20 MHz	> 2 MHz
Carrier waveforms		All incl arbitrary*1 avon	ot DCK	Sino squaro pulsos
	All	All life. arbitrary 1, excep	DUPSK	sine, square, puises
Meriai r M	1 1-11- 1 0.010/	10 11- 100 1-11	achier 1 Ha + 0 10/	10.11- 200.1-11-
Modulation frequency	$1 \text{ kHz} \pm 0.01\%$ 10 Hz - 100 kHz, max. resolution 1 Hz $\pm 0.1\%$ 10 Hz - 200 kHz			IU HZ – 200 KHZ
Modulation waveform		S1	ne	10.111-000.111-
Deviation	$0 - 2$ % resolution ± 0.01 %			10 kHz – 200 kHz, resolution 1 kHz
Modulation distortion,		<0.4%, typ. 0.12%		<2.0%,
THD		for 1% deviation		<1.0% for
				freq. dev. \leq 100kHz,
			mod. freg. 200Hz-	
				50kHz, and $f_{c} \leq 30MHz$
External FM				
Modulation frequency		10 Hz to	200 kHz	
Deviation				max 200kHz with sine
Deviation		0 2 70		modulation
Dhogo Shift Vouring (DSV)	Ca	rior phase leaving between	$\sim 0^{\circ}$ and 100° non cohorc	
Corrier waveforms	6	Cine triangle aguere		
PSK, internal keying ireq.	IOHz - IOOKHz, 50% duty cycle			
PSK, external keying freq.		0 - 200kHz, TTL signal		
Burst		· · · · · ·		
Carrier frequency	0.1 mHz - 2 MHz			
Carrier waveform	All, phase-coherent on/off – switching			1
On periods per Burst	1 - 2000		1 - 200	
Start/Stop – Phase	0°	0°		0°
		-180°+180°, resolution	1° for sine, triangle and	start/stop level at
		$f_{\rm C} \le 20 \rm kHz$	-	peaks for haversine,
		-		sawtooth and pulses
Burst trigger modes				
Internal (Manually)	Single & Continuous	Single & Continuous with	า	Single & Continuous
	with	1mHz = 100kHz repetition	• n frequency	with
	$1 k H r \pm 0.010$ / mon from		ппериенсу	112Uz ropotition
	икпи \pm 0.01% fep. freq			
Determination of the state		- f		irequency
External via Mod. input	with 0 - 200kHz repetitio	n requency		I KHZ max. repetition
				rreq.

Model	PM 5136	PM 5138A	PM 5139	PM5193	
Sweep					
Carrier waveform	~		All	~	
Sweep functions	Single			Single	
	Continuous			Continious	
	Hold/Release	9			
Courses also and attaciation	Reset to star	t irequency			
Sweep characteristics	Linear or logarithmic				
Cruzon modor	Up or down				
sweep modes	Sweep and Hyback				
	Sweep and noid				
Sween ranges may	1mHz - 5MHz	1mHz _ 5MHz	1 mHz = 10 MHz	1 mHz = 50 MHz	
Sweep langes max.		50kHz = 10MHz	50 kHz = 20 MHz		
Sweep time	10ms - 1000s 10ms - 999s			10ms - 999s	
Number of frequency steps		Sweep time / 1ms		4096 max.	
Gate		Non-coherer	nt signal keying		
Carrier frequencies		All			
Carrier waveforms		All		All except pulses	
Gate, internal					
Keying frequency	10Hz - 100kHz		10Hz – 200kHz		
Duty cycle			50%		
Gate, external					
Keying frequency		0 – 200kH	z, TTL signal	0 – 500kHz	
Interface bus remote contr	rol				
Isolation	in-	- and outputs galvanically	v separated with opto-couple	ers	
Control capability	all functions and characteristics				
GPIB/IEEE-488.2		Address range 0 – 3	0 and listen only mode		
RS232					
Baud rate / data/	110-19200 / 7 or 8 / 1 / odd, even or no panty				
Stop Dits	havdurava av safturava (Van /Vaff)				
Handshake	hardware or software (Xon/Xoff)				
Miscellaneous					
Instrument settings	1+9				
Rear connectors	modulation input / trigge	ring input / reference inp	ut / TTL output / modulatio	n output / penlift output /	
	sweep output / 1	0 MHz reference output /	interface bus connector *1 /	power connector	
Dimensions (HxWxD)	· · ·	105 x 315 x 405 mm	· ·	105 x 440 x 430 mm	
Weight	6.7 kg	6.1 kg	6.7 kg	10.5 kg	
Operating conditions					
Temperature	Reference $23^{\circ}C \pm 1^{\circ}C$, Operating $+ 5 + 40^{\circ}C$ Storage $-40 + 70^{\circ}C$				
Safety	According to CE regulation 73/23: EN 61010-1, CAT II, Pollution Degree 2				
EMC	According to CE regulation 89/336:				
	Emission according to EN 55 011 Group 1 Class B, respectively CISPR 11.				
Denne / Viere f	Immunity according to EN 50 082-1, inclusive IEC 801-2, -3, -4.				
Power / line trequency	40147	100,120,220,240	$V / 50 - 60 \text{ Hz} \pm 5\%$	10010	
Power consumption	42VV	00W	58W	105W	

*1 Instruments with GPIB/IEEE 488.2 or RS232 interface

^{*2} Zo=50 Ω , Rl=50 Ω , Modulation off

*3 Via GPIB interface

FLUKE®

Ordering Information

PM 5136/00n 5 MHz Programmable Function Generator PM 5136/02n 5 MHz Programmable Function Generator with GPIB/IEEE 488.2 interface

PM 5138A/10n 10 MHz Programmable Function Generator PM 5138A/12n inclusive GPIB/IEEE-488.2 interface and Arbitrary PM 5138A/13n inclusive RS232 interface and Arbitrary

PM 5139/00n 20 MHz Programmable Function Generator PM 5139/02n inclusive GPIB/IEEE-488.2 interface and Arbitrary PM 5139/03n inclusive RS232 interface and Arbitrary.

Power options

 $\begin{array}{l} n=1 \ \mbox{Universal European 220 V} \\ n=3 \ \mbox{Standard North American 120V} \\ n=4 \ \mbox{United Kingdom 240 V} \\ n=5 \ \mbox{Switzerland 220 V} \\ n=8 \ \mbox{Australia 240 V} \end{array}$

PM5193 U.S.Versions 120V

PM 5193M Programmable Synthesizer/Function Generator PM 5193SM Programmable Synthesizer/Function Generator with 10MHz reference input PM 5193VM Programmable Synthesizer/Function Generator with Video Modulation

PM5193 European Versions 220V

PM 5193 Programmable Synthesizer/Function Generator PM 5193S Programmable Synthesizer/Function Generator with 10MHz reference input PM 5193V Programmable Synthesizer/Function Generator with Video Modulation

Included with PM5193

Line cord, rack mounting brackets, programming card, and Certificate of calibration practices

Accessories

PM 9051 BNC to 4 mm banana adapter PM 9551 50 ohm to 600 ohm Adapter PM 9581/01 50 ohm feed-through termination 3 W PM 9585/01 50 ohm feed-through termination 1 W Y8021 Shielded DEEE-488 Cable, 1m Y8022 Shielded DEEE-488 Cable, 2m Y8023 Shielded DEEE-488 Cable, 4m PM 9564 19 inch Rackmount kit for PM5136/38A/39 Rackmounting brackets for PM5193 are included

Factory Warranty

One year product warranty

Manuals

Operators Manual included with instrument

Fluke Corporation P.O. Box 9090, Everett, WA 98206

Fluke Europe B.V.

P.O. Box 1186, 5602 BD Eindhoven, The Netherlands

For more information call: In the U.S.A.: (800) 443-5853 or Fax: (425) 356-5116 In Europe/M-East: +31 (0)40 2 678 200 or Fax: +31 (0)40 2 678 222 In Canada: (905) 890-7600 or Fax: (905) 890-7600 or Fax: (905) 890-6866 From other countries: +1(425) 356-5500 or Fax: +1 (425) 356-5116 Web access: http://www.fluke.com

©Copyright 1999 Fluke Corporation. All rights reserved. A0630UEN A